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Emerging infectious diseases present one of the greatest pub-
lic health challenges of the twenty-first century. Among these 
are zoonotic viruses that originate from reservoir species, 

often mammals, and jump to humans to cause disease syndromes 
of varying form and severity. An emerging virus, depending on 
its ability to transmit among humans, can lead to individual or a 
few sporadic cases, resulting in a localized outbreak that requires 
public health intervention or, in the worst scenarios, can develop 
into a large epidemic or global pandemic. Such emergence events 
over the past two decades are numerous and varied. They include 
viruses not previously encountered, such as the SARS and MERS 
coronaviruses1–3, and familiar foes that have reappeared to cause 
outbreaks, such as swine- and avian-origin influenza4,5, and Ebola6 
and Zika7 viruses. Although many outbreaks end naturally or are 
controlled quickly, questions remain over how best to scientifically 
respond to these events.

The broad-scale factors responsible for viral emergence have 
been well documented and include human population growth, 
increased frequency and reach of travel, changing patterns of land 
use, changing diets, wars and social upheaval and climate change8,9. 
These factors increase interactions between humans and reservoir 
hosts, facilitating exposure to zoonotic viruses and spillover infec-
tions in people, and allow emerging viruses to spread more easily 
through human populations. The interactions between virus genet-
ics, ecology and the host factors that determine virus emergence are 
so complex that it is impossible to predict what virus will cause the 
next epidemic, making it essential that our response is scientifically 
informed, robust and efficient10.

The emergence of virus outbreaks generates a set of common 
questions, whose answers are central to disease mitigation and con-
trol (Table 1), and which at times can only be answered by sequenc-
ing of viral genomes. These include what is the virus, is it novel, or 

does it represent the re-emergence of a known pathogen; what is its 
mode of transmission; where does the emerging virus come from 
(in particular, what is its reservoir host and/or geographic source); 
what ecological factors underpin its emergence; how many intro-
ductions into humans have there been; what is the timing of these 
introduction events, and was there a period of undetected transmis-
sion before the first reported case; during flare-ups and future out-
breaks, how are they connected to previous events; and what is the 
nature of virus evolution and is there evidence for local adaptation? 
In the past, many of these of questions were addressed using case 
(incidence) data, which led to estimates of key epidemic parameters 
such as the basic reproductive number (R0, the expected number of 
secondary cases produced by each case at the start of the outbreak) 
that were used to inform epidemic control policy. Although still 
of fundamental importance, case data alone cannot inform pub-
lic health management with the level of precision necessary for all 
targeted interventions. Recent advances in virus genome sequenc-
ing and phylogenetic analyses, however, mean that we are now in 
a position to answer such questions with molecular precision, and 
open new areas of investigations not previously possible based on 
epidemiological data alone (Table 1).

Virus genomics have been used to investigate infectious disease 
outbreaks for several decades. This is possible because viruses, par-
ticularly those with RNA genomes, generate genetic variation on 
the same timescale of virus transmission, through a combination of 
high rates of mutation and replication11,12. Consequently, it is pos-
sible to infer epidemiological and emergence dynamics from virus 
genomes sampled and sequenced over short epidemic timescales. 
We term the science of using genomics and associated analyses 
‘genomic epidemiology’.

Initially, genomic approaches relied on indirect methods (for 
example, restriction fragment length polymorphisms13) to infer  
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genotypes and differentiate between virus strains. As direct sequenc-
ing technologies advanced, there was a transition toward the use of 
nucleotide sequences from fragments of virus genomes for this pur-
pose14–21. Now, thanks to advances in high-throughput sequencing 
and decreasing costs22, most virus genomics studies utilize data sets 
containing tens to thousands of (near) complete virus genomes.

In this Review Article, we will show how our ability to track and 
understand infectious disease outbreaks have been revolutionized 
by the addition of virus genomics data. We will highlight the varied 
uses of virus genomics during the different stages of viral outbreaks, 

from initial virus detection to understanding the factors contrib-
uting towards global spread (Box  1). We will show how genomic 
epidemiology can be used to track the spread of emerging viruses, 
where the challenges lie, and establish an agenda for future work. 
Although we focus on human disease, the genome-based method-
ologies that we describe can be equally applied to animal and plant 
infections. Similarly, the increasing ability to rapidly sequence com-
plete genomes of bacterial species means that these technologies 
offer much to the study of emerging bacterial disease, including 
those associated with antimicrobial resistance.

Outbreak detection
Most infectious disease outbreaks start with clinicians noticing 
unusual patterns. Patients may present with patterns of symptoms 
that are similar to those of more common diseases, but which, 
after repeated observation and diagnostic testing, may deviate in 
scale, seasonality or severity. At this very beginning of an outbreak, 
the most critical task is therefore to identify a causal pathogen. 
Historically, virus identification has been performed using molec-
ular tools, such as polymerase chain reaction (PCR) and enzyme-
linked immunosorbent assay (ELISA), that directly recognize 
pathogen-derived material (Box 2), or conventional non-molecular 
techniques, such as microscopy. The advent of untargeted metage-
nomic sequencing directly from clinical samples, however, means 
that we are now on the cusp of being able to detect human viruses in 
a single step, without a priori knowledge of putative causal patho-
gens (Box 2). The major advantage of sequencing-based approaches 
is the ability to detect novel viruses—such as the initial appearances 
of SARS2, MERS3 or Lujo virus23—or unexpected ones, as exempli-
fied by Ebola virus during the 2013–2016 epidemic in West Africa24.

Once an outbreak has been detected and a causal virus identi-
fied, several basic questions can immediately be answered about the 
virus itself, including: (1) whether it is novel or previously known 
to infect humans; and (2) if we have the diagnostics, vaccines  
and therapeutics available to fight it. Importantly, the generation  
of virus genomics data at this stage will provide deeper insights  
into these questions by uncovering molecular details not possible 
with conventional tools. Phylogenetics will also provide an addi-
tional level of detail, revealing virus origins, evolutionary charac-
teristics and connections to previous outbreaks in the same region,  
or to transmissions in other regions6. Given high enough related-
ness to other members of a virus family with well-defined reser-
voir hosts (for example, old-world arenaviruses25), the sequence  
identification of novel virus species can also be informative about 
potential reservoirs.

First snapshot of an outbreak
Immediately after a viral outbreak has been identified there exists a 
‘fog-of-war’. The extent of the outbreak, the timing and nature of its 
source, and the contribution of human-to-human transmission will 
be extremely limited, yet these data are critical to designing effective 
responses. Genomic epidemiology, if applied quickly and compre-
hensively, holds the potential to answering these questions24.

To provide an initial snapshot of an outbreak, it is important 
to understand the diversity of circulating viruses from as many 
cases as possible. Virus genetic diversity, measured as the average 
number of nucleotide differences among viruses in the population, 
will increase as an outbreak progresses due to the accumulation of 
genetic changes in virus genomes at each round of viral replication6. 
If this rate of mutational accumulation is relatively constant—that 
is, it conforms to a ‘molecular clock’ of evolutionary change26—then 
the rate at which it occurs (referred to as the ‘evolutionary rate’) 
allows us to estimate when the sequenced viruses last shared a com-
mon ancestor. Critically, this provides a lower bound on when an 
outbreak began, and how long the virus had been circulating prior 
to discovery5,27,28. If the virus genomes have been sampled over only 

Table 1 | Critical questions addressed by viral genomic 
epidemiology

Questions Examples from genomic 
epidemiology

References

What virus is 
causing the 
outbreak?

Metagenomic sequencing from 
patient samples revealed a novel 
virus—Lujo virus—as the causal virus 
for an outbreak in South Africa in 
2008

23

How is the virus 
transmitting?

Sequencing studies of MERS 
coronavirus combined with 
coalescent approaches showed 
that human outbreaks are driven by 
seasonally varying zoonotic transfer 
of viruses from camels

90,91

Where did the 
outbreak begin?

Large-scale sequencing efforts 
and phylogenetic analyses showed 
that the 2009 influenza A/H1N1 
pandemic originated in swine 
populations from Mexico

5,46

What factors 
drive the 
outbreak?

Analysis of more than 1,600 Ebola 
virus genomes identified critical 
factors that contributed to the spread 
of the virus during the 2013–2016 
epidemic in West Africa

61

How many 
introductions 
have there been?

Sequencing of Zika virus from 
patients and mosquitos in Florida 
showed that multiple introduction 
events of the virus sustained 
the 2016 outbreak in Miami and 
surrounding counties

62

When did the 
outbreak begin?

Large-scale studies showed that the 
Zika epidemic in the Americas likely 
started in Brazil more than a year 
earlier than was initially believed

7,92–94

Are outbreaks 
linked?

Analysis of Ebola virus genomes 
during the 2013–2016 epidemic 
showed that the virus can persist for 
more than a year in survivors, and 
be responsible for flare-ups of the 
outbreak via sexual transmission

52,57,95,96

How is the virus 
evolving?

Sequencing studies during the 
2013–2016 Ebola epidemic identified 
mutations in the virus genome that 
rapidly rose to a high frequency, 
compatible with increased fitness; 
experimental follow-up studies 
showed that some of those mutations 
were probably Ebola virus adapting to 
a new host

71,72,97

Examples of commonly used software packages for genomic epidemiology investigations are 
available at: http://www.virological.org/c/software.
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Box 1 | Outbreak of Disease X: a hypothetical scenario

In addition to the Ebola, SARS and Zika viruses, the WHO watch-
list of viruses that may lead to public health emergencies98 ac-
knowledged for the first time that the next serious epidemic may 
be caused by a currently unknown virus—Disease X. Its inclusion 
emphasizes the need for flexible and deployable platforms to un-
derstand and combat disease outbreaks of many varieties. Most 
likely, Disease X may be a known microorganism believed to cause 
no or mild human disease, as was the case for Zika virus before its 
epidemic in the Americas. Disease X could emerge anywhere in 
the world and, given the mobility of human populations, it could 
spread to distant and highly populated regions within days or 
weeks. To illustrate how genomic epidemiology can successfully 
reveal important aspects of disease emergence and inform epi-
demic control efforts, we present a hypothetical scenario in which 
Disease X successfully jumped into humans, established sustained 
transmission and caused severe disease.

In Miami, Florida (United States), a 22-year-old man sought 
medical assistance after an influenza-like illness suddenly 
progressed to a dangerously high fever and laboured breathing. 
He reported golfing activity at nearby resorts, harbouring clusters 
of wildlife, including birds. He was admitted into the emergency 
room and within 3 days died of pneumonia. During this time, 5 
other young adults presented with similar symptoms to Miami-
area hospitals. Standard molecular diagnostics for commonly 
suspected pathogens were negative, but immunoglobulin M 
antibodies collected from each patient were slightly cross-reactive 
to MERS and SARS coronaviruses. Since the virus could not be 

conclusively identified with conventional assays, metagenomic 
sequencing was used to identify Disease X as a novel human virus, 
most closely related to other coronaviruses in ducks (see figure, 
panel a). Importantly, due to the relatedness of the novel virus to a 
family of viruses with well-defined host-ranges, these data led to a 
hypothesis about its potential origin and reservoir (overwintering 
migratory birds in the nearby Everglades wetlands) and allowed 
for the development of virus-specific diagnostics and targeted 
sequencing approaches.

Within 3 weeks, there were 40 new laboratory-confirmed 
Disease X cases, including 8 from healthcare workers who 
contacted the original 6 cases, and 5 total deaths (an 11% apparent 
case fatality rate). Targeted sequencing from 15 patients and 
related viruses, including from ducks across Southern Florida, 
revealed that the human Disease X viruses clustered together 
on a phylogenetic tree and shared a common ancestor with 
virus genomes from ducks near Palm Beach, suggesting there 
was a single zoonotic spillover event and subsequent human-to-
human transmission (panel b). A molecular clock phylogenetic 
analysis further indicated that the common ancestor of the 
human viruses existed several months ago, suggesting that the 
first patient identified was not the first case of the outbreak, 
and highlighting the possibility of many more unreported or 
asymptomatic cases.

As the outbreak progressed, there was a critical need to 
understand transmission to help control further spread. 
Traditional epidemiology, including contact tracing, provided 

Real-time genomic investigation of Disease X. a, Metagenomic sequencing revealed that Disease X, which could not be identified using standard 
clinical assays, was a novel virus. b, Targeted sequencing from additional human cases and from related viruses uncovered the likely animal reservoir, 
the time period that it was introduced into the human population (represented by * in the lower panel), and that subsequent transmission was human-
to-human. c, More intensive virus genome sequencing was used to construct detailed transmission chains and identify potential control measures. d, 
Layering additional climatic (pictured in the lower panel; https://www.climate.gov/maps-data), transportation, geographic, economic and demographic 
information into a large phylogenetic data set revealed the risk factors that facilitated local and global spread. Images and icons courtesy of S. 
Knemeyer.

a b c d SpreadTransmission chainSnapshotDetection

*

NATuRE MiCRObiOLOGy | VOL 4 | JANUARY 2019 | 10–19 | www.nature.com/naturemicrobiology12

https://www.climate.gov/maps-data
http://www.nature.com/naturemicrobiology


Review ARticleNaTurE MicrOBiOlOgy

a limited time-scale, so that only a few mutations have accumulated 
in the virus population, then evolutionary rates will need to be 
based on those from prior outbreaks or extrapolations from related 
viruses29. Later in an epidemic, when viruses have been sequenced 
over a sufficient period of time to capture mutational accumula-
tion, evolutionary rates can be readily estimated directly from virus 
genomes sampled during the outbreak30–32. Evolutionary rate esti-
mates, however, can be sensitive to model specification over short 
periods of time33 and depend on the timescale of measurement34. 
Such issues, as well as the unwarranted implications about changes 
in transmissibility and virulence that may accompany seemingly 
inflated evolutionary rates, have been discussed in detail in the con-
text of the 2013–2016 Ebola epidemic in West Africa6.

A common approach to phylogenetic analysis of the genetic 
diversity of a virus population is to infer a tree from sampled virus 
genomes with branches measured in units of time (that is, a rooted, 
time-calibrated tree). This can provide estimates of the date of the 
last common ancestor at the root of the tree, as well as each indi-
vidual branching event. As an approximation, these branching 
events correspond to virus transmission from one case to the next, 
an insight that offers further key information about the unfolding 
outbreak35. In addition, models of how the process of virus trans-
mission relates to the shape of phylogenetic trees (Fig.  1) enable 
important epidemiological inferences. In particular, coalescent 
models relate the rate at which virus lineages of a phylogenetic tree 
merge, as common ancestors, to the size of the epidemic. This uses 
the simple premise that, for a sample of virus genomes, the larger 
the outbreak is, the further back in time the common ancestor will 
be found (Fig. 1a–c).

Early in an outbreak, one of the primary concerns is to under-
stand the rate at which the virus may be spreading through the 
human population. As noted in the introduction, this can be 
assessed by estimating R0, which is critical for epidemiological pro-
jections and for planning public health responses. While R0 can be 
calculated through epidemiological analyses of case counts, accu-
rate estimates of such data may not be available early in an outbreak, 
since they require a time-series of cases. As demonstrated during 
the early spread of the novel influenza A/H1N1 virus in 2009, phy-
logenetic inference of epidemic growth based on virus genomics 
can provide estimates of R0 comparable to that inferred from case 
data36. These calculations can be performed using coalescent mod-
els that directly estimate R0, based on classic susceptible–infected–
recovered (SIR) models37,38. A similar group of models analyse 
patterns of lineage birth–death, linking the shape of trees to the 
rate at which virus lineages split and go extinct, and have recently 
gained popularity39,40. Both approaches were applied during the 
2013–2016 epidemic in West Africa to calculate R0 to assess Ebola 
virus transmission dynamics, and illuminated the impact of ‘super-
spreader’ events41,42. All of these methods, however, are beholden to 

the inherent uncertainty of genome sequence data, especially at the 
start of an epidemic where such sequences exhibit limited variability 
and sampling may be biased. Hence, phylogenetic estimates of R0, 
although probably indicative of broad characteristics such as epi-
demic growth, may not be precise enough to make critical decisions 
in the absence of corroborating (epidemiological) information.

The initial snapshot of virus genome sequences can also pro-
vide critical insights into the role of a zoonotic transmission dur-
ing an outbreak (Fig. 1d). Genomic analyses, for example, revealed 
that Lassa fever virus, which is endemic in West Africa43, primar-
ily spreads via repeated transmission from local rodent reservoirs, 
as opposed to sustained human-to-human transmission44. This is 
in contrast to Ebola virus during the 2013–2016 epidemic in West 
Africa, where genomic epidemiology showed that the outbreak 
was the result of a single zoonotic spillover, followed by sustained 
human-to-human transmission45.

Given availability of virus genomes from potential zoonotic res-
ervoirs, another aim of early virus sequencing from an outbreak 
is to uncover the identity and geographic location of the reservoir 
host. The influenza A/H1N1 pandemic that started in 2009 was 
quickly recognized as being a likely species jump from pigs, as all of 
the virus genomic segments closely matched those previously seen 
in swine4,5. Like the 2013–2016 Ebola epidemic in West Africa, the 
influenza A/H1N1 pandemic probably started as a single introduc-
tion into humans that occurred a few months before it was detected5. 
The initial suspicion, and later confirmation, that the spillover 
occurred in Mexico, was complicated by a lack of widespread zoo-
notic genomic surveillance in this region. Retrospective sequenc-
ing of samples from Mexican pigs, however, showed that there were 
close relatives of the human virus circulating in this country at the 
time of the epidemic, confirming its origin46.

Transmission chain tracking
Beyond the initial characterization of an outbreak, virus genome 
sequencing offers enormous potential for determining transmis-
sion chains to understand networks of ‘who-infected-whom’. The 
tracking of transmission chains has long been a standard part of 
public health responses to outbreaks, providing critical information 
that can be used to interrupt virus spread and reduce the magnitude 
of an outbreak. This work has traditionally been performed using 
interview-based contact tracing, which is labour intensive and lim-
ited by the availability and openness of patients for interviews. This 
approach is particularly challenging during large outbreaks charac-
terized by large numbers of co-occurring transmission chains.

Virus genomic-based approaches can provide much more 
in-depth information compared to traditional non-sequencing 
based approaches, as the branching patterns of phylogenetic trees 
approximately correspond to transmission from one case to the 
next35 (Fig. 1). Virus genome sequences, for example, were used to  

important insights into the risk factors for transmission. Virus 
genome sequencing was used to infer transmission chains that 
linked each infected patient (panel c). These analyses revealed that: 
(1) transmission occurred primarily between individuals that had 
been in close proximity; and (2) a few individuals infected most of 
the known cases. In response, an action plan of patient isolation/
containment and widespread use of facemasks was implemented 
to reduce close contact and aerosol transmission.

The Disease X outbreak peaked within a year, resulting in 
~2,000 cases in Florida and several imported cases throughout 
the world. Most of the imported cases did not result in secondary 
local infections, with the exception of two healthcare workers in 
New York City and a large outbreak of more than 100 cases near 

Havana, Cuba. Factors leading to local and global spread were 
investigated by layering transportation, geographic, climatic, 
economic, and demographic information into a large phylogenetic 
data set of Disease X viruses (panel d). Analyses indicated that 
virus dispersal from Miami was more likely to occur to large cities 
that were either: (1) in close driving proximity; or (2) connected 
by direct flights with high travel volumes. Once in a new city, the 
success of virus transmission was correlated with low economic 
status and high population density. This raised concerns about 
Disease X outbreaks emerging in low-income and densely 
populated countries within the Caribbean and Central America. 
The WHO used this information to implement comprehensive 
surveillance and response efforts in at-risk nations.

Box 1 | Outbreak of Disease X: a hypothetical scenario (continued)
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reconstruct the spread of foot-and-mouth disease virus in the 
United Kingdom, including the identification of superspreader 
events47–49. Genomic data also played a critical role in understand-
ing flare-ups during the West African Ebola outbreak50–52, where 
phylogenetic analyses showed that most of the flare-ups were linked 
to persistently infected Ebola survivors (Fig. 2a), thereby demon-
strating sexual transmission of the virus50,52. None of these insights 
would have been possible without virus genomic data.

The utility of virus genomic data for the inference of transmission 
chains is dependent on several factors, including: (1) the evolution-
ary rate of the virus; (2) the length of time between the infections 
of interest; and (3) the proportion of sampled cases; which together 
determine the resolution of the genetic signal (Fig. 2b). Although 
RNA viruses exhibit remarkably high evolutionary rates53, their 
small genome sizes and short epidemiological generation times 
often result in, on average, less than one substitution per transmis-
sion event54–56 (Fig. 2b). Hence, virus genomics alone often cannot 
be expected to perfectly reconstruct transmission chains at the 
level of individual infections. Combined with epidemiological data, 
however, virus genomics provides a powerful tool for restricting 
the number of possible transmission scenarios and for supporting 
novel modes of transmission47,57,58. In addition, most phylogenetics-
based transmission chain analyses have been performed using virus 
consensus sequences (that is, a single genome per sample/patient 
that represents the average of the virus population), which may limit 
resolution. However, as virus infections exhibit diverse intra-host  

populations (containing intra-host single nucleotide variants 
(iSNVs)44), newer methods incorporating viral iSNVs may greatly 
increase the resolution of transmission chain analyses so long as 
multiple variants are transmitted between hosts59.

Outbreak mapping
As described in the previous sections, genomic epidemiology can be 
used to detect an outbreak, show its origin and elucidate transmis-
sion patterns. Evolutionary inferences from virus genomes, unlike 
non-sequencing based methods, can also be used to dissect the spa-
tial structure and dynamics of spread, as well as to assess how an 
epidemic may unfold through time and space.

Uncovering the spatial patterns of virus spread during outbreaks 
is a key objective that has been transformed by genomic epidemiol-
ogy. Reconstructing a detailed spatial history of virus spread from 
the origin of an outbreak is generally a task for phylogeographic 
methods60, which provide location estimates for every ancestral 
node in a virus phylogeny using simple stochastic (or ‘random 
walk’) models. Phylogeographic analyses, for example, were used 
to show how Ebola virus spread across West Africa during the 
2013–2016 epidemic61 (Fig. 3). Importantly, virus genome sampling 
with strong spatiotemporal coverage allowed for the dissection of 
the entire epidemic into a metapopulation of short- and long-lived 
transmission chains61. Similar analyses were also used to show that 
multiple introductions were responsible for sustaining the 2016 
Zika outbreak in Florida62. It is important, however, to appreciate 

Box 2 | Molecular technologies for detecting and tracking outbreaks

Traditional methods. The methods traditionally used to diagnose 
infectious disease agents in patients are developed to detect either 
antigens (for example, ELISAs and lateral flow assays), or nucleic 
acids (for example, PCR) derived from the pathogen. These as-
says are typically designed to recognize either single (for example, 
Ebola virus) or closely related (for example, Filoviridae) patho-
gens. Versions of such assays may also be combined in a multi-
plexed fashion to detect a small number of different pathogens (for  
example, haemorrhagic fever viruses). While most laboratories  
are capable of running these assays, they are often not available  
for uncommon or novel pathogens, and running multiple rounds 
of testing can take weeks. They also require a priori knowledge 
of putative pathogens and cannot typically be used to detect out-
breaks that are caused by novel, highly divergent, understudied or 
rare pathogens.

Deployable solutions. Over the last several years, robust and 
deployable solutions have been developed for pathogen detection 
that do not require the maintenance of a cold chain, which can 
be difficult or impossible under many outbreak conditions. 
Simple-to-use, point-of-care rapid diagnostic tests have the 
potential to transform early outbreak detection. For example, the 
ReEBOV antigen rapid test for Ebola virus infection developed 
during the recent epidemic could be deployed throughout sub-
Saharan Africa to help detect new outbreaks99,100. Simple nucleic 
acid assays, such as loop-mediated isothermal amplification 
(LAMP) developed for Zika virus101, H5N1 avian influenza 
virus102 and SARS coronavirus103, have eliminated the need for 
thermal cycling and most power requirements. New and creative 
advances in microfluidics104, nanowire arrays105 and field-effect 
biosensors106,107 are also helping to reduce the barriers to efficient 
and rapid diagnostics, while increasing sensitivity and specificity 
of detection. Of particular interest for deployment in resource-
limited settings are paper-based engineered gene circuits, such 
as sensors designed for strain-specific Ebola virus detection108. 
They are stable for long-term storage at room temperature and 

are activated by rehydration, and thus can be used in remote 
environments. Very recently, highly sensitive and deployable 
CRISPR-based diagnostics have also been developed that utilize 
CRISPR–Cas13/12a to detect pathogen-derived nucleic acids109–112. 
Similar to the traditional methods described above, all of these 
tools require a priori knowledge of probable causal pathogens  
and the availability of antibodies, genome sequences or other 
pathogen characteristics.

Sequencing-based methods. Untargeted metagenomic 
sequencing provides a potential one-step solution for outbreak 
pathogen detection of both known and novel pathogens, and 
may be able to replace the need for multiple individual pathogen 
assays24. The main advantage of metagenomic sequencing is 
that it does not require a priori knowledge of the pathogen, but 
comes at the expense of specialized equipment, increased costs 
and bioinformatic complexity. Although high backgrounds of 
host nucleic acid and/or low pathogen titres in clinical samples 
can make pathogen detection difficult, host gene depletion113 
and pathogen enrichment114,115 methods can help alleviate these 
issues. After the first outbreak pathogen genome sequence 
has been obtained, targeted approaches using next-generation 
sequencing can also be developed. This was the case for both of 
the recent Zika and Ebola epidemics116,117, where cheaper and 
faster amplicon-based approaches were rapidly developed and 
deployed to track both of the epidemics. The most common 
platforms used for these purposes are those developed by Illumina 
(for example, MiSeq and HiSeq), because they have high accuracy 
and throughput, but they also have high costs and relatively short 
read lengths (up to 300 base pairs). Cheaper portable devices, 
such as the miniaturized Oxford Nanopore MinION, can help to 
produce data in close to real time directly in-country and under 
austere conditions93,117. This is a significant advancement because, 
along with open data sharing, rapid diagnostics and sequencing, 
such devices help promote a comprehensive and collaborative 
response network.
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the uncertainty of phylogeographic estimates, and to bear in mind 
that such analyses may only be capable of elucidating partial pic-
tures of outbreak spread. In addition, sampling biases may severely 
affect these analyses, although the coalescent and birth–death mod-
els mentioned above have been extended to account for aspects of 
virus population structure63–65, making the analyses more robust to 
sampling heterogeneity66.

Phylogeographic inference methods can also be used to provide 
insights into the factors driving virus spread67 (Fig. 3). Such analy-
ses are enabled by the integration of virus genomics with diverse 
meta-data sets and are critically dependent on the timeliness of data 
generation and open sharing. These approaches were initially intro-
duced to confirm the key role of human air transportation in the 
global circulation of influenza viruses67, but they have also been use-
ful in untangling complex virus transmission dynamics on smaller 
scales61. To illustrate these methods, in Fig. 3 we show an application 
of generalized linear modelling to explain Ebola virus migration 
rates between locations as a function of several potential predictors, 
to infer virus spread during West African Ebola outbreak (Fig. 3). In 
this case, geographic distances and population sizes at the location 
of origin and destination combine into a gravity model of spread, 
with virus transmission largely occurring within large population 
centres and geographic spread being more frequent over shorter 
distances61. These phylodynamic studies illustrate the growing 
importance of data integration for virus genomic analyses55, which 

critically depend on accurate metadata (for example, sampling date 
and sampling location), as well as other data sources that can cap-
ture host mobility and geographic, demographic and epidemiologi-
cal context.

inter-epidemic evolution and spread
Once outbreaks have been brought under control or (temporar-
ily) resolved, phylogenetic analyses can provide insights into evo-
lutionary patterns during inter-epidemic periods by comparing 
virus genome sequences sampled across different outbreaks. The 
most fundamental question is whether the virus in question has 
been able to persist in human populations between outbreaks, so 
that each new outbreak has arisen from an endemically circulat-
ing lineage (for example, dengue virus), or whether they represent 
independent zoonotic spillover events from an animal reservoir 
(for example, Ebola virus). With sufficient sampling of viruses from 
human and reservoir species, this question can be answered using 
standard phylogenetic analysis. For example, although both dengue 
virus and yellow fever virus have transmission cycles that involve 
mosquitoes and humans (urban transmission) or nonhuman  
primates (sylvatic transmission), phylogenetic analyses have shown 
that dengue virus is now an entirely endemic urban virus that does 
not rely on its sylvatic vectors and hosts to seed new epi demics68. 
Most human outbreaks of yellow fever, in contrast, have been  
shown by virus genomics approaches to represent independent 
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emergences of the virus from sylvatic sources, rather than spread 
via an urban cycle69,70.

Inter-epidemic analyses can also be used to elucidate the nature 
of virus evolution and spread in reservoir species, which are prob-
ably characterized by different evolutionary forces than those seen 
during human outbreaks71,72. For example, although human out-
breaks of Ebola have happened relatively frequently since the 1970s, 
each outbreak starts as an independent spillover of the virus from an 
animal (probably bat73) reservoir. Hence, the inter-epidemic evolu-
tion of Ebola virus occurs in a species other than humans, such that 
patterns of genetic divergence among the viruses associated with 
human epidemics can provide insight into viral replication and 
transmission within reservoir hosts. For example, there have been 
suggestions that Ebola virus has spread across Africa in a wave-like 
manner in its reservoir species74; however, phylogenetic analyses 
incorporating virus genomic data from recent outbreaks are incom-
patible with this scenario6. Additionally, while Ebola virus normally 
evolves according to a relatively constant molecular clock6,45,75–77, 
the phylogenetic branch leading to the viruses sequenced from the 
small Ebola outbreak that occurred in the Democratic Republic of 
the Congo in 2014, concurrent with the 2013–2016 epidemic in 
West Africa, was characterized by a far lower evolutionary rate78. 
Although the reasons for this reduction in evolutionary tempo  
are unclear, it is possible that it reflects Ebola virus evolution in  
a different (unknown) reservoir species that experiences a lower 
rate of viral replication. Alternatively, this rate disparity may 
result from the existence of different viral replication states within  
the same reservoir host, similar to that described during human 
epidemics, with faster rates observed during continuous human-to-
human transmission and slower rates during persistent infections 
of Ebola survivors79.

Requirements and challenges in genomic epidemiology
Virus genomic methods for outbreak investigation and con-
trol are powerful additions to more traditional epidemiological 
approaches but are critically dependent on well planned and coor-
dinated efforts. The foremost need for genomic epidemiology is 
timely access to clinical samples and data, which should be built on  

productive and equitable collaborations with local communi-
ties, public health agencies, outbreak responders, local clinics and 
researchers80. For each clinical sample to be used for virus genomic 
sequencing, it is essential to obtain a minimal set of metadata related 
to the infection, including: (1) the date of sample collection and/or  
onset of symptoms; and (2) the location of sampling. Additional 
information can greatly increase the utility of genomic epidemiology, 
including the availability of: (3) travel and contact history; (4) sus-
pected source of infection; and (5) clinical outcome and symptoms. 
Other factors, including patient history, age, sex and economic status 
can also help to reveal risk factors underlying infection and transmis-
sion. Within ethical constraints, it is important that communication 
lines remain open so that researchers undertaking data analysis can 
return actionable results to the public health community.

Other large-scale data resources are essential for investigat-
ing the spatio-temporal history and spread of an outbreak. These 
include the temporal and spatial distribution of cases, ecological 
conditions, vector abundance, environmental factors and travel  
patterns. Integration of these other data sources with virus  
geno mic data may reveal new properties of an outbreak, potentially  
leading to actionable measures55,61,67. Non-genomic data often 
comes from established networks of collaborations, or from the 
public domain, highlighting the value of open data and data  
sharing to outbreak investigations.

An important benefit of genomic epidemiology is that it can 
directly compare and jointly analyse virus genome sequences 
obtained during an epidemic, even if those sequences were gen-
erated by different laboratories. Consequently, there is an urgent 
need to make genomic and epidemiological data and analysis tools 
publically available during ongoing epidemics81. This movement is 
supported by the World Health Organization (WHO), which has 
called for data pertaining to public health emergencies to be dis-
seminated openly and immediately following generation, and not 
withheld until the acceptance or publication of a corresponding sci-
entific paper82. More recently, the WHO has outlined the current 
and future benefits of virus genome data sharing during outbreaks83. 
Combined with an acceleration of making manuscripts available 
via preprint servers such as arXiv and bioRxiv, especially during 
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outbreaks84, there has been a shift towards scientists storing their 
data and source code on depositories such as GitHub (https://www.
github.com), Synapse (https://www.synapse.org) and Data Dryad 
(https://www.datadryad.org), in close to real-time for others to use. 
Furthermore, extensive online communities and forums such as 
Twitter (https://www.twitter.com), Virological (http://virological.
org), FluTrackers (https://www.flutrackers.com), ProMED (https://
www.promedmail.org), Nextstrain (https://www.nextstrain.org), 
HealthMap (https://www.healthmap.org) and Microreact (https://
www.microreact.org) allow rapid dissemination of unpublished 
results and analyses. In our experience, not only does the process 
of open science promote new collaborations and lead to more accu-
rate scientific insights into outbreak research, but it helps in get-
ting relevant information rapidly into the hands of decision makers. 
Despite these advances, however, the speed, nature and extent of 
virus genome data sharing is inconsistent, sometimes resulting in 
confusion over what is, or should be, best practice81,85.

Future perspective
Genomic epidemiology promises much to the study and control of 
infectious disease outbreaks, particularly if viral genomes can be 
acquired and analysed in real-time. The accumulated set of these 
data—together with the rapid development of sophisticated soft-
ware packages (http://virological.org/c/software)—will provide a 
valuable resolve for the mitigation and control of future outbreaks. 
Ultimately, with sufficient genome sequences from individual viral 
genera and/or families, it may be possible to categorize viruses by 
their phylogenetic patterns and utilize this information in epidemic 
preparedness. For example, as well as considering obvious biologi-
cal features of viruses such as their genome structure and mode of 
transmission, it may be possible to group viruses according to a 

series of evolutionary variables such as rate of evolutionary change, 
extent of antigenic evolution, frequency of recombination, pattern 
of geographic spread and population dynamics. This information 
may then help forecast the evolutionary behaviour of any virus, 
should it re-emerge in human populations, and assist in the selec-
tion of future vaccine strains86–88. This information will also help 
counter the alarmist claims that emerging viruses will evolve novel 
phenotypes, such as airborne transmission in the case of Ebola 
virus89, that often accompany any major disease outbreak. It is clear, 
however, that a more fundamental understanding of the genetic 
and ecological barriers of virus spillover into human populations is 
needed to better identify risk factors for disease emergence. Long-
term capacity building, partnerships with local communities, and 
commitments to long-term investments on these fronts will go a 
long way towards better enabling the global community to effec-
tively and rapidly deal with future emerging outbreaks80.
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